Indonesian Fisheries Research Journal is the English version of fisheries research journal. The first edition was published in 1994 with once a year in 1994. Since 2005, this journal has been published twice a year on JUNE and DECEMBER.

Editor in Chief:
Prof. Dr. Ir. Ngurah Nyoman Wiadnyana, DEA (Fisheries Ecology-Center for Fisheries Research and Development)

Associate Editor:
Dr. Wijopriono (Fisheries Hidro Acoustic-Center for Fisheries Research and Development)

Editorial Board:
Prof. Dr. Ir. Hari Eko Irianto (Fisheries Technology-Center for Fisheries Research and Development)
Prof. Dr. Ir. Gadis Sri Haryani (Limnology-Limnology Research Center)
Prof. Dr. Ir. Husnah, M. Phil (Toxicology-Center for Fisheries Research and Development)
Prof. Dr. Ir. M.F. Rahardjo, DEA (Fisheries Ecology-Bogor Agricultural Institute)

Language Editor:
Andhika Prima Prasetyo, S.Pi, (Center for Fisheries Research and Development)

Assistant Editor:
Dra. Endang Sriyati
Darwanto, S.Sos.
Amalia Setiasari, A.Md

Editorial Office:
Ofan Bosman, S.Pi

Published by:
Agency for Marine and Fisheries Research and Development

Manuscript send to the publisher:
Indonesian Fisheries Research Journal
Center for Fisheries Research and Development
Gedung Balitbang KP II, Jl. Pasir Putih II Ancol Timur Jakarta 14430 Indonesia
Phone: (021) 64700928, Fax: (021) 64700929
Website: http://ejournal-balitbang.kkp.go.id/index.php/ifrj/, Email: ifrj.puslitbangkan@gmail.com.

Indonesian Fisheries Research Journal is printed by Center for Fisheries Research and Development Budgeting F.Y. 2016.
FOCUS AND SCOPE OF INDONESIAN FISHERIES RESEARCH JOURNAL

Indonesian Fisheries Research Journal (http://ejournal-balitbang.kkp.go.id/index.php/ifrj) has p-ISSN 0853-8980; e-ISSN 2502-6569 with accreditation number: 704/AU3/P2MI-LIPI/10/2015 (periode Oktober 2015-Oktober 2018). The first edition was published in 1994 with once a year in 1994. Since 2005, this journal has been published twice a year on June and December.

Indonesian Fisheries Research Journal publishes research results on resources, oceanography and limnology for fisheries, fisheries biology, management, socio-economic and enhancement, resource utilization, aquaculture, post harvest, of marine, coastal and inland waters.

Manuscript is entering to Indonesian Fisheries Research Journal will be checked on the guidelines writing by Editorial Office. If it is in compliance will be reviewed by two (2) person Editorial Board and one (1) person peer-reviewer based on the appointment of Editor in Chief. The decision whether or not a manuscript accepted the rights of Editor in Chief based on the recommendations of Editorial Board and peer-reviewer.

INDEXING INFORMATION OF INDONESIAN FISHERIES RESEARCH JOURNAL

Indonesian Fisheries Research Journal (http://ejournal-balitbang.kkp.go.id/index.php/ifrj) has p-ISSN 0853-8980; e-ISSN 2502-6569 that have been indexed in some indexers repute, among others: World Cat, Cross Ref, Indonesian Scientific Journal Database (ISJD), SCILIT, Sherpa/Romeo, Google Scholar dan Directory Open Access Journals (DOAJ).
PEER-REVIEWERS OF
INDONESIAN FISHERIES RESEARCH JOURNAL

1. Prof. Dr. Ir. Wudianto, M.Sc. (Fishing Technology-Center for Fisheries Research and Development)
2. Dr. Purwito Martosubroto (The National Commission on Fish Stock Assessment)
3. Dr. Imam Mustofa Zainudin (Marine Biologist-World Wide Fund for Nature, WWF), Indonesia
4. Prof. Dr. Ir. Cecep Kusmana, M.S. (Ecology and mangrove silviculture-Bogor Agricultural Institute)
5. Dr. Tonny Wagey (Fisheries Oceanography-The University of British Columbia), Canada
6. Dr. Régis Hocdé (Mathematics-Institute of Research for Development), France
7. Dr. Laurent Pouyaud (Marine Biologist-Institute of Research for Development), France
8. Dr. Campbell Davies, Australia
9. Prof. Colin Simpfendorfer (Fisheries-Biologist-Centre for Sustainable Tropical Fisheries and Aquaculture & James Cook University), Australia
10. Dr. Shinsuke Morioka, Japan
11. Prof. Neil Loneragan (Fisheries Biologist-Murdoch University), Australia
12. Dr. Ario Damar, M.Si. (Fisheries Ecology-Bogor Agricultural Institute)
13. Prof. Dr. Ir. Setyo Budi Susilo, M.Sc. (Bogor Agricultural Institute)
14. Prof. Dr. Ir. Ari Purbayanto, M.Sc. (Bogor Agricultural Institute)
15. Prof. Dr. Ir. Sonny Koeshendrajana, M. Sc. (Resources Economics-Research Centre for Marine and Fisheries Socio-Economics), Indonesia
16. Prof. Dr. Sam Wouthuyzen (Oceanography LIPI)
17. Prof. Dr. Ir. Endi Setiadi Kartamihardja, M.Sc. (Institute for Fisheries Enhancement and Conservation)
18. Dr. Ir. Augy Syahailatua (Research Center for Oceanography-The Indonesian Institute of Sciences)
19. Dr. Sudarto (Research Center and Development Aquaculture)
20. Dr. Priyanto Rahardjo, M.Sc. (Estimation of stock-Fisheries High School)
21. Dr. Estu Nugroho (Research Center and Development Aquaculture)
22. Ir. Duto Nugroho, M.Si. (Resources and Environment-Center for Fisheries Research and Development)
23. Dr. Ir. Rudhy Gustiano, M.Sc. (Genetic Fisheries-Institute for Freshwater Research and Development)
24. Ir. Badrudin, M.Sc. (Demersal Fisheries Biology-BPPL)
25. Dr. Ir. Mochammad Riyanto, M.Si. (Fishing Technology-Bogor Agricultural Institute)
26. Dr. Ir. Abdul Ghofar, M. Sc. (Fish Stock Assessment Resource-UNDIP)
Editor of Indonesian Fisheries Research Journal (IFRJ) would like to thank for Peer-Reviewers who have participated in the review paper published in the scientific journal's, so that this journal can be published in a timely manner. Peer-Reviewers who participated in the publication Volume 22 Number 2 December 2016 are:

1. Dr. Priyanto Rahardjo, M.Sc. (Estimation of stock-Fisheries High School)
2. Dr. Ario Damar, M.Si. (Fisheries Ecology-Bogor Agricultural Institute)
3. Prof. Dr. Ir. Wudianto, M.Sc. (Fishing Technology-Center for Fisheries Research and Development)
4. Ir. Badrudin, M.Sc. (Demersal Fisheries Biology-BPPL)
5. Ir. Duto Nugroho, M.Si. (Resources and Environment-Center for Fisheries Research and Development)
PREFACE

Indonesian Fisheries Research Journal (IFRJ) in 2016 entered the Volume 22. The process of publishing this journal is funded by Center for Fisheries Research and Development of the fiscal year 2016. All submissions should be published through the process of evaluation by the Editorial Board, Peer-Reviewers and editing by Editorial Office.

Management of Indonesian Fisheries Research Journal (IFRJ) in 2016 began referring to the Open Journal Systems (OJS). In terms of appearance there were some minor changes, namely:
1. Inclusion of p-ISSN and e-ISSN in the upper right corner on the face skin page, title page and table of contents page of issue, without colons
2. Inclusion of numbered lists or ISSN barcode in the lower right corner on the back cover
3. Special Sheets for Peer-Reviewers
4. Sheet gratitude for Peer-Reviewers involved in the review of each number
5. Each title sheet no additional information on the website, email address and information about the IFRJ, as well as the logo and the cover on the left and right. This change information is displayed on each foreword for 2 (two) publications.

The IFRJ Volume 22 Number 2 2016 presented seven fisheries research articles. Those seven articles are: The effect of depht of hooks, set and soak time to the catch per unit of effort of tuna in The Eastern Indian Ocean; The influence of swimming layer and sub-surface oceanographic variables on catch of labacore (*Thunnus alalunga*) in Eastern Indian Ocean; Estimation of yellowfin tuna production landed in Benoa Port with weigh-weight, length-weight relationship and condition factor approaches; Inter-specific competition and fishing effect to population dynamic of Bali Sardine (*Sardinella Lemuru*); The distribution and abundance of decapod and fish communities in Cleveland Bay, Australia; Catch composition and some biological aspects of sharks in Western Sumatera Waters of Indonesia; Diversity of reef fish fungsional groups in terms of coral reef resilientcs.

Those scientific papers are expected to contribute to policy makers and managers of fisheries resources in Indonesia. Editor would deliver sincere thanks to reseachers from the Center for Fisheries Research and Development and outside for their active participation in this edition.

Editor in Chief
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER-REVIEWER</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v-vii</td>
</tr>
<tr>
<td>The Effect of Depth of Hooks, Set and Soak Time to the Catch per Unit of Effort of Tuna in The Eastern Indian Ocean</td>
<td>Bram Setyadji, Budi Nugraha and Lilis Sadiyah</td>
<td>61-68</td>
</tr>
<tr>
<td>The Influence of Swimming Layer and Sub-Surface Oceanographic Variables on Catch of Labacore (Thunnus alalunga) in Eastern Indian Ocean</td>
<td>Fathur Rochman, Widodo Pranowo and Irwan Jatmiko</td>
<td>69-76</td>
</tr>
<tr>
<td>Estimation of Yellowfin Tuna Production Landed in Benoa Port With Weigh-Weight, Lenght-Weight Relationship and Condition Factor Approaches</td>
<td>Irwan Jatmiko, Hety Hartaty and Budi Nugraha</td>
<td>77-84</td>
</tr>
<tr>
<td>Inter-Specific Competition and Fishing Effect to Population Dynamic of Bali Sardine (Sardinella Lemuru)</td>
<td>Andhika Prima Prasetyo and Rudy Masuswo Purwoko</td>
<td>85-90</td>
</tr>
<tr>
<td>The Distribution and Abundance of Decapod and Fish Communities in Cleveland Bay, Australia</td>
<td>Andhika Prima Prasetyo and Rudy Masuswo Purwoko</td>
<td>91-98</td>
</tr>
<tr>
<td>Catch Composition and Some Biological Aspects of Sharks in Western Sumatera Waters of Indonesia</td>
<td>Dharmadi, Mahiswara and Kamaluddin Kasim</td>
<td>99-108</td>
</tr>
<tr>
<td>Diversity of Reef Fish Fungsional Groups in Terms of Coral Reef Resilences</td>
<td>Isa Nagib Edrus and Muhammad Abrar</td>
<td>109-122</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td></td>
<td>App. 123</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td></td>
<td>App. 124</td>
</tr>
<tr>
<td>AUTHOR GUIDELINES</td>
<td></td>
<td>App. 125</td>
</tr>
</tbody>
</table>
THE EFFECT OF DEPTH OF HOOKS, SET AND SOAK TIME TO THE CATCH PER UNIT OF EFFORT OF TUNA IN THE EASTERN INDIAN OCEAN

Bram Setyadji
IFRJ, Vol. 22 No. 2, Page: 61-68

ABSTRACT

Yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna have been intensively exploited by longline fleets since 1980’s, however, a large proportion of zero catch per set of target species still occurred. Zero catch data contributed significantly to the low catch per unit of effort (CPUE) compared to other countries at the same fishing area. Therefore, understanding the factors contributed to the CPUE of tuna is essential, in order to improve longline fishing efficiency. A total of 2,115 set-by-set data were obtained from Indonesian Scientific Observer Program. The onboard observations were carried out at commercial tuna longline operated in Eastern Indian Ocean from August 2005 to December 2014. Several analytical approaches were conducted in this paper. First, General Linear Model (GLM) was applied in order to model the relationship between CPUE with all the variables involved. Second, boxplot diagram, polynomial and linear regression were applied to fit the relationship between CPUE with set time, soak time and depth (represented by hook position) respectively. The result showed that, there was no significant relationship between set time and CPUE of bigeye and yellowfin tuna. Soak time was positively related with CPUE of yellowfin and affect adversely on bigeye. Depth also have significant relationship with CPUE of tuna, where catch of yellowfin decreased linearly with hook depth, whereas catch of bigeye was performed the opposite. Improvement in tuna longline fishery in eastern Indian Ocean can be achieved through implementation of the specific soak time and hook depth for each target species, i.e. yellowfin and bigeye tuna.

Keywords: Yellowfin tuna; bigeye tuna; set time; soak time; hook depth; Indian Ocean

THE INFLUENCE OF SWIMMING LAYER AND SUB-SURFACE OCEANOGRAPHIC VARIABLES ON CATCH OF ALBACORE (Thunnus alalunga) IN EASTERN INDIAN OCEAN

Fathur Rochman
IFRJ, Vol. 22 No. 2, Page: 69-76

ABSTRACT

This study was highlighted the context of albacore’s number catch, swimming layer and sub-surface oceanographic variables (SSOV) at Eastern Indian Ocean include temperature, dissolved oxygen, salinity, nitrate, phosphate and silicate. Hopefully the information would be useful for the longliners to understand the ALB behaviour, environment and the best techniques on how to catch this fish. Data in this study were based on the Research Institute for Tuna Fisheries (RITF) observer program in Benoa from 2010-2013. Data analysis was base on primary data and secondary data. Primary data are albacore’s (ALB) swimming layer data which are measured by minilogger. Secondary data is SSOV data which extracted from World Ocean Atlas 2009 (WOA09). The results show that the optimum catch of albacore occurred at depth of 118 to 291 m with the average temperature between 12.41-20.47 °C, dissolved oxygen 3.24-4.68 ml/l, salinity 34.78-35.01 psu, nitrate 6.78-17.50 µ mol/l, phosphate 0.62-1.27 µ mol/l and silicate 10.06-24.77 µ mol/l. The highest catch of ALB was mostly at depth of 156 m (hook number 2 and 11) with the average temperature 18.71°C, dissolved oxygen 4.68 ml/l, salinity 34.78 psu, nitrate 10.71 µ mol/l, phosphate 0.86 µ mol/l and silicate 15.95 µ mol/l. The highest influence of swimming layer and sub-surface oceanographic variable to the number of ALB catch happened at depth of 291 m of ALB swimming layer with coefficient correlation (r) of 0.934 and determination coefficient (R²) of 0.872. The lowest influence of swimming layer and sub-surface oceanographic variable to the number of ALB catch happened at depth of 156 m of albacre swimming layer with coefficient correlation (r) of 0.528 and determination coefficient (R²) of 0.279. The relationship between swimming layer and sub-surface oceanographic variable on catch of ALB tuna was low (<0.500).

Keywords: Swimming layer; sub surface oceanographic variable; albacore; Eastern Indian Ocean
ESTIMATION OF YELLOWFIN TUNA PRODUCTION LANDED IN BENOA PORT WITH WEIGHT-WEIGHT, LENGTH-WEIGHT RELATIONSHIPS AND CONDITION FACTOR APPROACHES

Irwan Jatmiko
IFRJ, Vol. 22 No.2, Page: 77-84

ABSTRACT

Yellowfin tuna (Thunnus albacares) is one of the important catch for the fishing industry in Indonesia. Length-weight relationship study is one of important tools to support fisheries management. However it could not be done to yellowfin tuna landed in Benoa port since they are in the form of gilled-gutted condition. The objectives of this study are to determine the relationship between gilled-gutted weight (GW) and whole weight (WW), to calculate length weight relationship between fork length (FL) and estimated whole weight (WW) and to assess the relative condition factor (K) of yellowfin tuna in Eastern Indian Ocean. Data were collected from three landing sites i.e. Malang, East Java; Benoa, Bali and Kupang, East Nusa Tenggara from January 2013 to February 2014. Linear regression analysis applied to test the significance baseline between weight-weight relationships and log transformed length weight relationship. Relative condition factor (K) used to identify fish condition among length groups and months. The results showed a significant positive linear relationships between whole weight (WW) and gilled-gutted weight (GW) of T. albacares (p<0.001). There was a significant positive linear relationships between log transformed fork length and log transformed whole weight of T. albacares (p<0.001). Relative condition factor (K) showed declining pattern along with length increase and varied among months. The findings from this study provide data for management of yellowfin tuna stock and population.

Keywords: Weight-weight relationships; length-weight relationships; condition factor; yellowfin tuna; Eastern Indian Ocean

INTER-SPECIFIC COMPETITION AND FISHING EFFECT TO POPULATION DYNAMIC OF BALI SARDINE (SARDINELLA LEMURU)

Andhika Prima Prasetyo
IFRJ, Vol. 22 No.2, Page: 85-90

ABSTRACT

Stock-recruitment relationship of Bali sardine was investigated based on Beverton-Holt model by assuming inter-specific competition. Model is modified to incorporate the effect of fishing pressure that is density-independent to population dynamic by developing scenario fishing on adult and/or juvenile population. The results show that harvested adult the dramatic decline of recruitment supply. However, harvested juvenile is led to the positive response to population size, as an increase in fishing mortality rate will reduce competition mortality rate. Precautionary approach required by considering bipartite life cycle.

Keywords: Stock-recruitment relationship; fishing pressure; Bali sardine

THE DISTRIBUTION AND ABUNDANCE OF DECAPOD AND FISH COMMUNITIES IN CLEVELAND BAY, AUSTRALIA

Andhika Prima Prasetyo

ABSTRACT

Spatial and temporal variations in the fish and decapod communities were investigated at three stations in Cleveland Bay along with other zooplankton and phytoplankton communities. The linkage between biological assemblages and physical properties of the ocean was explained to develop better understanding of population dynamic of planktonic communities. Biological and physical properties data were gathered in 3 stations by 6 different trips. The results show that there is a significant association between daytime and tidal period to the abundance of planktonic communities (P < 0.05). Spatial distribution of fish and decapod communities are likely explained by “predator pit” and “match/mismatch” concepts to increase the survival probability along with physical properties of the ocean.

Keywords: Biological oceanography; decapod and fish communities; Cleveland bay

CATCH COMPOSITION AND SOME BIOLOGICAL ASPECTS OF SHARKS IN WESTERN SUMATERA WATERS OF INDONESIA

Dharmadi

ABSTRACT

This study was conducted in western Sumatera and since October 2013 to June 2014. The sampling locations in Banda Aceh and Sibolga-North Sumatera which were the largest base of fisheries in western Sumatera region. Shark landing recorded by enumerators was used as sampling data daily. This research aim to describe sex ratio, size composition, catch composition of sharks, and length at first maturity. In Banda Aceh, the sharks as target fish collected by sorting the bycatch from tuna longlines and tuna handlines. In Sibolga, sharks is bycatch from fish net, bottom gillnet and purse seine. Overall, there were 20 species of shark caught in west Indian Ocean and landed at those fish landing sites, dominated by Spot tail shark (23%) and Silky shark (13%),
whereas Hammerhead shark contributed about 10% and Oceanic whitetip shark was only less than 1%. Almost of Spot tail shark, Silky shark, and Scalloped hammerhead that caught in that area were immature, while for the almost part of Tiger shark and Pelagic thresher were matured. The sex ratios for Spot tail shark, Silky shark, Tiger shark, Pelagic thresher, and Scalloped hammerhead caught and landed at Lampulo and Sibolga fish landing sites were not balance. The length at first maturity for Spot tail shark was $L_m = 87.1\, \text{cm}$ and $L_m = 213.2\, \text{cm}$ total length for Tiger shark.

Keywords: Sharks; biology; fisheries; western sumatera

DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

Isa Nagib Edrus

ABSTRACT

Infrastructure development in the particular sites of Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands. Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resilient naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controlling algae growth to recolonize coral juveniles. The aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual censuse. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reef based on Obura and Grimsditch (2009) techniques. The results succesfully identified several fish functional groups such as herbivores (21 species), carnivores (13 species) and fish indicator (5 species) occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resilient. Resilience indices ranged from 1 (low level) to 3 (moderate level) and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

Keywords: Resiliences; reef fishes; Pari Islands
THE EFFECT OF DEPTH OF HOOKS, SET AND SOAK TIME TO THE CATCH PER UNIT OF EFFORT OF TUNA IN THE EASTERN INDIAN OCEAN

Bram Setyadji*, Budi Nugraha and Lilis Sadiyah

1Research Institute for Tuna Fisheries, Jl. Mertasari No. 140, Sidakarya, Denpasar Selatan, Denpasar, Bali – 80224, Indonesian
2Research Institute for Marine Fisheries, Jl. Muara Baru Ujung, Komp Pelabuhan Perikanan Nizam Zachman, Penjaringan, Jakarta Utara, Jakarta – 14440, Indonesian
3Research Center for Fisheries Research and Development, Jl. Pasir Putih II Ancol Timur, Jakarta. Indonesian

Received; Sept 04-2015 Received in revised from Nov 8-2016; Accepted Nov 8-2016

ABSTRACT

Yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna have been intensively exploited by longline fleets since 1980’s, however, a large proportion of zero catch per set of target species still occurred. Zero catch data contributed significantly to the low catch per unit of effort (CPUE) compared to other countries at the same fishing area. Therefore, understanding the factors contributed to the CPUE of tuna is essential, in order to improve longline fishing efficiency. A total of 2.115 set-by-set data were obtained from Indonesian Scientific Observer Program. The onboard observations were carried out at commercial tuna longline operated in Eastern Indian Ocean from August 2005 to December 2014. Several analytical approaches were conducted in this paper. First, General Linear Model (GLM) was applied in order to model the relationship between CPUE with all the variables involved. Second, boxplot diagram, polynomial and linear regression were applied to fit the relationship between CPUE with set time, soak time and depth (represented by hook position) respectively. The result showed that, there was no significant relationship between set time and CPUE of bigeye and yellowfin tuna. Soak time was positively related with CPUE of yellowfin and affect adversely on bigeye. Depth also have significant relationship with CPUE of tuna, where catch of yellowfin decreased linearly with hook depth, whereas catch of bigeye was performed the opposite. Improvement in tuna longline fishery in eastern Indian Ocean can be achieved through implementation of the specific soak time and hook depth for each target species, i.e. yellowfin and bigeye tuna.

Keywords: Yellowfin tuna; bigeye tuna; set time; soak time; hook depth; Indian Ocean

INTRODUCTION

Large highly migratory tuna, such as yellowfin (Thunnus albacares) and bigeye tuna (Thunnus obesus) have long been the target fishery in Indian Ocean, mainly by the industrial longline vessels from Japan, Taiwan and Korea (Polacheck, 2006; Lee et al., 2005). Estimation of total catch by all fleets in eastern Indian Ocean for yellowfin and bigeye tuna from Indian Ocean Tuna Commission (IOTC) was 94,699 mt and 37,724 mt, respectively (IOTC, 2014). Indonesia’s contribution was up to 38% of total catch both yellowfin and bigeye in Indian Ocean, which mainly came from industrial longline fishery (IOTC, 2014). Even though it has become intensive target catch since 1980’s, the latest stock assessment conducted by IOTC (2014) mentioned that both yellowfin and bigeye tuna stock were determined to be not overfished and were not subject to overfishing. Long-lining was introduced to Indonesia by Japan in the 1930s, but not until the 1960s it has become commercial (Simorangkir, 1982; Proctor et al., 2003). Currently, Indonesia has the largest number of fleet of commercial tuna long-line vessels in the Indian Ocean i.e. 1,256 registered vessels in 2011 (Irianto et al., 2013). The large number of vessels were due to re-flagged (ownership shifting) of foreign vessels mainly from Taiwan and China (Sadiyah & Prisantoso, 2011). Large effort in the similar fishing ground usually resulted with low catch. The standardized CPUE of tuna Indonesian long-line fleets is lower compared to Japan or Korean fleets (Sadiyah et al., 2011; Lee et al., 2014; Ochi et al., 2014). This inefficiency is...
showed by a large proportion of zero catch observations for target species that still occur in catch and effort data (Sadiyah et al., 2011).

In order to improve long-line fishing efficiency, understanding the factors contributed to the catch of tuna is essential. Accurate set time, soak time and capture depths lead to significant improvements in fishery oceanographic relationships, vertical distribution, habitat preferences, and stock assessments (Boggs, 1992; Brill & Lutcavage, 2001). This work focused on the relationship among set time, soak time and hook depth to the catch of tuna, especially yellowfin and bigeye tuna in the eastern Indian Ocean.

MATERIALS AND METHODS

About 2,115 set-by-set data compiled from August 2005 to December 2014 were obtained from Indonesian Scientific Observer Program following commercial tuna longline operated in Eastern Indian Ocean and based in Muara Baru (Jakarta), Palabuhanratu (Jawa Barat), Cilacap (Jawa Tengah) and Benoa (Bali) (Fig. 1). The data set covered fishing date, location of deployment, number of hooks, number of hooks between float (HBF), set time, soak time and catch in number. Six data were excluded from analysis due to incomplete information on number of total hook or number hook between float. Catch and effort data were recorded as the number of fish per 100 of hooks recorded per set, respectively. The analysis in this chapter is only concerned with the two tuna species, namely yellowfin tuna (YFT) and bigeye tuna (BET).

In this study, a General Linear Model was used to investigate effect of set and soak time, and hook depth on the CPUE of tuna (defined as the number of fish per 100 hooks). This study limit only the interaction between CPUE and the operational factors related in longline fishery such as set time, soak time, number of hook between float and depth of hook.

Set time was divided into two categories i.e. day (00.00-18.00) and night (18.00-24.00). All time recorded was in GMT+8. The soak time is considered as the time elapsed between the start of set and the start of hauling of the fleet. A constant rate of longline retrieval was assumed throughout each operation. Soak time is divided into one-hour interval and converted into decimal. For example, soak time is defined to 5h if it was between 4.5h and 5.5h. For analysis, soak time is categorized into four categorical variables, namely A=6-8 hours, B=8-10 hours, C=10-12 hours, D=12-14 hours, E=14-16 hours and F=16-18 hours. Depth of hooks is considered as the position of hook between float (HBF), the higher the hook...
position number the deeper the hook (Fig. 2). There are 14 HBF configurations used by Indonesian longliners, and for the analysis it is divided into four categorical variables (1=5-9; 2=10-12; 3=13-14; 4=15-21) according to Nishida & Wang (2006). The GLM model was presented below:

\[\log(\text{CPUE} + c) = \mu + \text{Set} + \text{Soak} + HBF + \varepsilon \]

where,

- \(\text{CPUE} \) = nominal CPUE of tuna (No. fish/100 hooks),
- \(c \) = constant value (i.e. 10% of the average nominal CPUE)
- \(\mu \) = intercept,
- \(\text{Set} \) = effect of set time,
- \(\text{Soak} \) = effect of soak time,
- \(HBF \) = effect of HBF,
- \(\varepsilon \) = the error term (normally distributed),

One-way analysis of variance (ANOVA) \((a = 0.05)\) was used to find the any significance among parameters toward CPUE.

Boxplot diagram was used in order to further investigate the relationship of set time against CPUE. Polynomial regression \((y = ax^2 + bx + c)\) was used to describe the relationship between soak time and CPUE, where \(a\) and \(b\) are the coefficients, \(c\) is an intercept, \(x\) is the soak time, \(y\) is CPUE. Then the optimum soak time of tuna long-line fishing gear can be estimated afterwards. Linear regression \((y = ax + b)\) was used to describe the relationship between depth (represented by hook position) and CPUE, where \(a\) is a coefficient, \(b\) is an intercept, \(x\) is the hook position, \(y\) is CPUE. One-way ANOVA \((a = 0.05)\) was used to find any correlation between hook depth and nominal catch of tuna. All statistical data were analyzed using R software version 3.1.3 (R Core Team, 2016). The map was drawn using open source mapping software QGIS version 2.8.1.

RESULTS AND DISCUSSION

Results

During all 87 trips from 2005 to 2014, the time of commencement and completion of set and the haul of the two ends of the gear were noted. Most of sets were done at daytime (96% for yellowfin and 97% for bigeye), between 06.00-12.00 am. Soak time noted in this study ranged from 5-24 hours. Soak time data less than 6 hours and more than 18 hours were omitted from the analysis, due to lack of representative samples and might cause bias. GLM model for both BET and YFT shows that, the nominal CPUE was significantly affected by soak time \((P<0.05)\) and HBF \((P<0.01)\) (Table 1, Table 2). AIC value was -70.249 and -301.38, respectively for BET and YFT. The set time was unlikely affected CPUE on both models.

Boxplot diagram shows that there was no difference between mean values of CPUE against set time (Figure 3). The relationships between CPUE of BET and YFT against soak time are indicated in Figure

Figure 2. The configuration of long-line fishing gear (HBF=12).

Copyright © 2016, Indonesian Fisheries Research Journal (IFRJ)
4 and can be described in quadratic regression as follows:

For yellowfin tuna: \(y = -0.003x^2 + 0.081x - 0.273 \),
\(R^2 = 0.5649 \)

For bigeye tuna: \(y = 0.009x^2 - 0.227x + 1.616 \),
\(R^2 = 0.6831 \)

Obviously soak time is affected adversely to the CPUE of YFT and BET. CPUEs of YFT increased simultaneously with the duration of soak time, and then gradually decreased after reached its peak. As for BET, the longer soak time produced lower CPUE even though from 12 hours onward it started to increase. From both quadratic equations, the CPUE of YFT reached its peak at soak time around 12 hours, while for BET was around 6 hours. However, it is noted that the increase of CPUEs did not positively related with the increasing of soak time, instead, it decline for YFT, whereas for BET it is the opposite.

The example of HBF 12 and 18 were taken to configure the relationship of hook depth (represented by hook position number) with the catch of both BET and YFT. The result shows that catch of BET increased linearly with hook depth, whereas catch of YFT was performed adversely (Fig. 5).

Table 1. Analysis of deviance and summary table of GLM model for BET.

| Df | Deviance | Resid. Df | Resid. Dev | Pr(>|Chi|) |
|------|----------|-----------|------------|--------|
| NULL | 1480 | 1479 | 87.235 | |
| catSet | 0.1921 | 1476 | 87.043 | 0.06276 . |
| catSoak | 3 1.2493 | 1476 | 85.794 | 5.07E-05 *** |
| catHBF | 3 4.0978 | 1473 | 81.696 | 6.28E-16 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|--------|
| (Intercept) | -1.72601 | 0.16434 | -10.503 | < 2e-16 *** |
| catSetNight | -0.07468 | 0.22933 | -0.326 | 0.74473 |
| catSoakB | 0.05735 | 0.04796 | 1.196 | 0.231974 |
| catSoakC | 0.23204 | 0.09956 | 2.331 | 0.019901 * |
| catSoakD | 0.29442 | 0.17957 | 1.64 | 0.1013 |
| catHBF2 | 0.26371 | 0.16273 | 1.621 | 0.105325 |
| catHBF3 | 0.58685 | 0.16494 | 3.558 | 0.000386 *** |
| catHBF4 | 0.68122 | 0.1627 | 4.187 | 2.99E-05 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

AIC=-70,249

Figure 3. Boxplot of mean CPUE of both yellowfin (YFT) and bigeye tuna (BET) against set time (day and night).
Table 2. Analysis of deviance and summary table of GLM model for YFT.

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td>742</td>
<td>30.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>catSet</td>
<td>1</td>
<td>0.0473</td>
<td>741</td>
<td>30.757</td>
<td>0.2677</td>
</tr>
<tr>
<td>catSoak</td>
<td>3</td>
<td>1.2005</td>
<td>738</td>
<td>29.557</td>
<td>7.81E-07 ***</td>
</tr>
<tr>
<td>catHBF</td>
<td>3</td>
<td>1.2538</td>
<td>735</td>
<td>28.303</td>
<td>3.99E-07 ***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|---------|
| (Intercept) | -1.45528 | 0.15251 | -9.542 | < 2e-16 *** |
| catSetNight | -0.07065 | 0.17459 | -0.405 | 0.6858 |
| catSoakB | 0.33013 | 0.14275 | 2.313 | 0.021 * |
| catSoakC | 0.07121 | 0.30405 | 0.234 | 0.8149 |
| catSoakD | 0.50537 | 0.26813 | 1.885 | 0.0599 . |
| catHBF2 | -0.35714 | 0.07732 | -4.619 | 4.56E-06 *** |
| catHBF3 | -0.74828 | 0.18824 | -3.975 | 7.73E-05 *** |
| catHBF4 | -0.59265 | 0.14669 | -4.04 | 5.90E-05 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC=-301.380

Figure 4. The quadratic regression curves between CPUE of both yellowfin (YFT, white dot, straight line) and bigeye tuna (BET, black dot, dashed line) and soak time.
Discussion

Set time did not affect the CPUE for both YFT and BET. This could be understood as an adaptation of fishermen to the behavior of tuna by adjusting the longline set. Several studies revealed that both yellowfin and bigeye tuna mostly occupy shallower water at night and deeper water layer at day (Weng et al., 2009; Schaefer et al., 2011; Evans et al., 2008; Brill et al., 2005). There is also a common knowledge among Indonesian fisheries, at full moon set is started at dawn, while at new moon set is started at early morning (Barata et al., 2011). This knowledge is combined with adjusting the number of HBF during set resulted in higher probability of catch for both YFT and BET either day or night. The most commonly used HBF configuration was 5, 12, 18 (Irianto et al., 2013).

Soak time contributed significantly to CPUE of tuna, although it vary between YFT and BET. The result is similar with the study of Chen et al. (2012) in western Indian Sea, at least for YFT, while for BET it has been totally different projection. This may be due to several causes, i.e. the number of samples used for their analysis was smaller (BET=69, YFT=31) compared to this study (BET=6,191 and YFT=2,568), and the use of just one HBF configuration might cause bias. The optimum soak time for YFT was around 12 hours, similar with Chen et al. (2012), while for BET was around 6 hours. The reason why the CPUE of YFT was decreased along with the soak time was probably due to bait deteriorating during soak (Chen et al., 2012), and fish that survived being hooked and the present of scavengers which can easily eat or remove hooked animals (Ward et al., 2003). This model is also applied on most shark and billfish (Ward et al., 2003). As for the model for BET in this study was projected differently compared to Chen et al. (2012). The reason was still unclear, but the possible reason might be lied on the set time and the use of deep longline configuration (HBF >10) by most Indonesian fleets, since 1983 shifting target fishery from YFT to BET (Sadiyah et al., 2011). The use of deep longline configuration combined with night set will likely come up with a result in more BET caught in first 6 hours of deployment, while set at day will be resulted in more BET caught after 12 hours of deployment.

Aside of operational factors used in this analysis, Sadiyah et al. (2012) reported that year, area and bait factors significantly influenced the nominal CPUEs of tuna known as technological creep. However, this study did not discuss about those factors and mainly focused on operational aspects related to the CPUE. Most of YFT was caught at lower number of hook position, because it spent more of the time inhibit shallower depth layer (Dagorn et al., 2006; Cayré, 1991; Bigelow et al., 1999), while BET has been mostly caught at higher number of hook position.
because even it has the same vertical migration behavior with YFT. This demonstrated distinct diurnal behavior in depth and water temperature preferences, with deeper, cooler waters frequented during the day and shallower, warmer waters frequented at night (Musyl et al., 2003; Evans et al., 2008).

CONCLUSION

Set time doesn’t have any correlation with CPUE on both tuna, while soak time was positively related with CPUE of yellowfin and affect adversely on bigeye. Depth also have significant relationship with CPUE of tuna, where catch of yellowfin decreased linearly with hook depth, whereas catch of bigeye was performed the opposite. Improvement in tuna longline fishery in eastern Indian Ocean can be achieved through implementation of the specific soak time and hook depth for each target species, i.e. yellowfin and bigeye tuna.

ACKNOWLEDGEMENT

The authors would like to thank to all scientific observers of Research Institute for Tuna Fisheries (RITF) for their contribution in collecting data throughout the years. We also would like to extend our gratitude to various organization, namely, Commonwealth Scientific and Industrial Research Organization (CSIRO), the Australian Centre for International Agricultural Research (ACIAR) and the Research Institute for Capture Fisheries (RCCF) for their funding support through research collaboration in the project FIS/2002/074: Capacity Development to Monitor, Analyze and Report on Indonesian Tuna Fisheries.

REFERENCES

Cayré, P. (1991). Behaviour of yellowfin tuna (Thunnusalbacares) and skipjack tuna (Katsuwonuspelamis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging. Aquat. Living Resour. 4: 1-12. DOI: http://dx.doi.org/10.1051/alr/1991000.

Copyright © 2016, Indonesian Fisheries Research Journal (IFRJ)